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The Shintani-Tanaka model is a glass-forming system whose constituents interact via an anisotropic poten-
tial depending on the angle of a unit vector carried by each particle. The decay of time-correlation functions of
the unit vectors exhibits the characteristics of generic relaxation functions during glass transitions. In particular
it exhibits a stretched exponential form, with the stretching index B depending strongly on the temperature. We
construct a quantitative theory of this correlation function by analyzing all the physical processes that contrib-
ute to it, separating a rotational from a translational decay channel. These channels exhibit different relaxation
times, each with its own temperature dependence. Interestingly, the separate decay function of each of these
processes is a temperature-independent function, and is shown to scale (exhibit data collapse) at different
temperatures. Taken together with temperature-dependent weights determined a priori by statistical mechanics
this allows one to generate the observed correlation function in quantitative agreement with simulations at
different temperatures. This underlines the danger of concluding anything about glassy relaxation functions

without detailed physical scrutiny.
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I. INTRODUCTION

The dynamics of glass-forming systems is typically inves-
tigated by measuring experimentally or computing in nu-
merical simulations an appropriate correlation function of the
density, the stress, a dipole moment, or any other physical
quantity that can be used for this purpose. As the temperature
of the supercooled liquid is lowered, the correlation func-
tions exhibit more and more sluggish relaxation, and below
some temperature become so slow to relax that accurate
measurements of the relaxation time are no longer possible.
In many glass-forming systems it appears [1] that a typical
time- and temperature-dependent correlation function C(T,¢)
can be well approximated by the so-called “stretched expo-
nential” form,

C(T,1) ~ exp{~[t/7(T)PD}, (1)

where 7(T) is a temperature-dependent relaxation time and
B(T) is a parameter whose temperature dependence is usu-
ally poorly understood.

It is also common to fit the relaxation time 7(7T) to a
so-called Vogel-Fulcher form. i.e.,

m(T) = 7 exp[AT/(T - Typ)], (2)

where 7, is some microscopic time scale, A is a constant, and
Tyr is a (finite) temperature where the relaxation time alleg-
edly diverges. In recent work [2] we have put a question
mark on the existence of finite-temperature divergences, pro-
posing that in systems of point particles with soft potential
(to be distinguished from, say, hard spheres) there is no di-
vergence in the relaxation time except possibly at 7=0. In-
deed, in all experimental and simulational fits to Eq. (2) the
temperature 7y is rather far from the range of sampled tem-
perature, and the extrapolation embodied in Eq. (2) is rather
dangerous. Indeed, the theoretically claimed lack of a finite-
temperature singularity was recently validated by careful re-
examinations of the available experimental data (cf. [3,4]).
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In this paper we demonstrate that also Eq. (1) can be
misleading, since the relaxation process in glassy systems
may very well be a composite process, including a number of
relaxation channels. It is possible that each channel is char-
acterized by a temperature-independent relaxation function,
and it is only the relative weights of the various processes
that result in an apparent temperature dependence of the re-
laxation function Eq. (1). This apparent temperature depen-
dence is then read as a temperature-dependent B(7). Of
course, if Eq. (1) is put in doubt, then also the meaning of the
fitted relaxation time 7(7) needs to be reevaluated. In par-
ticular, we recall that the temperature dependence of 7(T),
whether Arrhenius or not, is used to classify glasses as
“strong” and “fragile” in the Angell parlance [5]. Having
doubts about the relevance of the fit functions may have
interesting consequences on this issue as well.

The aim of this paper is to study these issues by analyzing
in some detail the dynamics of the Shintani-Tanaka model
[6] of glass formation. This model is very interesting since it
consists of one type of point particles which interact via an-
isotropic interactions. As such it can mimic to some degree
glass formers with hydrogen bonding, such as glycerol or
water. As different systems may exhibit different ways of
glassifying, albeit associated with some generic aspects of
the phenomenon of glass formation, it pays to describe in
detail the inhomogeneous states that develop naturally and to
understand the role of a variety of dynamical processes that
appear in various examples of glass transitions. We will at-
tempt to expose how a number of distinct process come to-
gether to exhibit a seemingly complex phenomenology
which can be understood in some detail. In particular, we
examine separately the rotational and translational channels
of relaxation, and how their relative contributions change
upon decreasing the temperature. Importantly, we will show
that the different channels are characterized by different re-
laxation times whose temperature dependence is not the
same. Nevertheless the relaxation functions associated with
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these decay channels are temperature independent, as is
shown below by data collapse. The paper culminates with a
computation of a time-correlation function as a sum of the
separate processes with a priori determined weights, in
agreement with simulations at different temperatures. A simi-
lar decomposition and computation of the relaxation func-
tions was achieved recently also for the model of a binary
mixture with 1/7'2 repulsion (see Ref. [10]).

A. Model and the numerical simulations
The model we employ here [6] has particles of mass m
interacting via the potential

U(r,],ﬂ 0)21_](7'”)+AU(V”,01,01), (3)

i»Yj

where r;; is the distance between the two particles i and ;.

The first term on the right-hand side of (3) is the standard
isotropic ~ Lennard-Jones  potential l_],-j=4e[(0'/ r)'?
—(a/r;)°], whereas the anisotropic part of the potential is

given by
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(4)
Here 6, (6,) is the included angle between the relative vector
r;=r;—r; and a unit vector u; (u;) (referred to below as
“spin”’) which represents the orientation of the axis of par-
ticle i (j). The function h((6-6,)/6,) (with 6,=126° and
0,=53.1°) has a maximum at 6= 6, and thus 6, is a favored
value of @;. Thus the anisotropic term in the potential favors
structures of fivefold symmetry. The parameter A controls
the tendency to fivefold symmetry, and therefore the frustra-
tion against crystallization. The ﬂs of mass, length, time,
and temperature are m, o, T=o0\m/ €, and €/ kg, respectively,
with kp being Boltzmann’s constant. According to the nu-
merical simulations presented in [6], for A <0.6 this system
crystallizes upon reducing the temperature. The ground state
crystal has an elongated hexagonal structure with antiferro-
magnetic ordering of the spins u;. For A=0.6 the system
fails to crystallize upon cooling, at least for the simulation
times reported in [6].

The results reported below are based on our own simula-
tions in two dimensions. In our work we used molecular
dynamics simulations in the NPT ensemble. We employ the
leapfrog algorithm [7] and Berendsen thermostat [7] with the
parameter 7;=5.07 and barostat with the parameter 7p/Br
=50.0 in the notation of [7], where B; is the isothermal com-
pressibility. We reproduced the dynamics described by [6].
The number of particles used was 4096 and the pressure was
maintained at P=0.5 with periodic boundary conditions. All
of the analysis described below was done using the data from
these simulations. The time-autocorrelation function of inter-
est was introduced in [6] in terms of the spins, in the form
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FIG. 1. (Color online) Relaxation function Cg(z) as a function of
linear time (upper panel), and of logarithmic time in the lower
panel. The leftmost curve (in red) pertains to 7=0.4 and in order to
the right the temperatures are 7=0.3, 0.25, 0.22, 0.20, 018, and
0.17. Note the extreme slowing down in this range of temperatures.

Crl(t) = (1/N)2 (ui(1) - u,0)). (5)

Our own numerical results for this function are shown in Fig.
1. As is customary in the field [1], the measured correlation
function was fitted in [6], to a stretched exponential form
Cr(t) xexp[—(t/ 7,)P]. For A=0.6 the relaxation is of Arrhen-
ius form with a constant value 8~0.95 for T>T,,=0.46, but
B was fitted separately for every temperature 7<<T,,, where
it decreases with temperature. We stress that in general such
a fit is not uniformly good at all times. The change of B(T)
with temperature destroys the possibility of data collapse.
Indeed, even if we plot the correlation function (5) as a func-
tion of ¢/ 7,(T), the functions do not superpose, as is demon-
strated in Fig. 2.

Moreover, in [6] the relaxation times were fitted to a
Vogel-Fulcher law 7,=7, exp[DTy/(T-T,)]; below we will
show that we can reconstruct the correlation function from
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FIG. 2. (Color online) Relaxation function Cg(t) as a function of
rescaled time #/7,(T). Note that the functions do not collapse on
each other due to the change in functional form which is carried by

B(T).
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FIG. 3. (Color online) Potential curves for particle pairs with
two spins, one spin, or no spin in favored position (blue continuous,
green dashed, or red dashed-dotted line, respectively). Inset: the
measured energies of particle pairs, falling in three distinct ranges
with gaps between them.

elementary processes with temperature-independent relax-
ation functions (i.e., without needing to fit anything at differ-
ent temperatures). As stated previously [2,8,10], the Vogel-
Fulcher fit may be misleading in indicating a finite
temperature where the relaxation time diverges. We do not
expect any singularity here for any dynamical process for
any 7>0. In the rest of this paper we describe how to rep-
resent the correlation functions seen in Fig. 1 in terms of the
dynamical processes occurring in this system.

II. SUMMARY OF PREVIOUS RESULTS

To reconstruct the correlation function from elementary
contributions we recall how statistical mechanics is built up
for this system [11]. In Fig. 3 we present the three potentials
between two particles, depending on the orientation of their
spins relative to the interparticle vector distance: lowest in
energy (blue continuous line) is the case for which both have
a favored spin orientation; the middle (green dashed line)
[high (red dashed-dotted line)] is the potential when one
(none) of the spins is in a favored orientation. One sees that
the minima of these potentials occur with significant gaps in
their energies, allowing us to now measure the average en-
ergy of pairs of particles as a function of temperature. These
averages fall in three distinct ranges, such that the range of
variation of each energy is much smaller than the gaps be-
tween the energies (see inset in Fig. 3). We denote the three
effective energies below as 2E,, 2F,, and 2E,, respectively.
Next, Ref. [11] defined quasispecies in the form of n-stars,
each of which is a given particle decorated by the » interpar-
ticle vector distances (edges) to its n neighbors (see for ex-
ample Fig. 4). Each such edge is colored according to the
spin orientations. We denote by i, j, and k the number of red,
green, and blue edges such that n=i+j+k. It turns out that in
the temperature range of interest (0<<7'<<0.5), in an over-
whelming majority of n-stars (more than 98%), the central
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FIG. 4. (Color online) An example of an n-star with n=5, i=2,
j=2, and k=1. The central particle has a spin with favored orienta-
tion with respect to edges 1 and 2. Thus these edges can be either
blue or green, and this central spin cannot be favored with respect
to any other edge. In the interesting range of temperatures we ob-
serve 36 n-stars with 4<i+j+k=<6. Colors are as used in Fig. 3.

particle has a spin orientation that is favorable with respect
to two of its edges, leading to the constraint (cf. [11])

> (j+2k)cp=4, (6)
ijk
where Cijk is the concentration of n-stars with 7, j, and & red,
green, and blue edges, respectively. This constraint is impor-
tant for the statistical mechanics of this system. The energy
of an n-star (referred to as a quasiparticle) is computed as

Ejj=iE,+ JE, + kE,, (7)

where k=<2. Note that, since the energies on the right-hand
side (RHS) of Eq. (7) depend on temperature, so does the
energy of the quasiparticles. Notwithstanding, in the interest-
ing temperature range the temperature dependence is weak;
we take the energies of the quasiparticles as 7 independent.
The degeneracy g;; of the energy level (number of quasipar-
ticles with the same energy) was computed in [11] in the

form
g“k:(2)<i+j+k_2)2j+2k_24i_k+2‘ (8)
7] k i
Finally we can write the partition function of the system:
ZIT\(T)] = E gijke_ﬁEijke_)\(f"'Zk). (9)
ijk

The Lagrange multiplier A is introduced to ensure that the
constraint (6) is satisfied. In terms of the partition function
the mole fraction of quasiparticles is

e PEiite™NG+20)

AT N (10)

In [11] it was shown that the prediction of this formula
agrees well with simulations until the system is “jammed,”
or, more correctly, until the simulation time is too short to
allow the system to equilibrate. Here we will use this theory
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FIG. 5. (Color online) Test of data collapse to validate the assumption (12). All the temperature shown in Fig. 1 are employed in this test.
Note that the data for the higher temperatures (7=0.3 and 0.25) do not contribute throughout the range of ¢/ 7 since the raw functions are

already extremely small at long times.

to compute the spin-autocorrelation function. As noted in
[11], we do not need to discuss separately all the 36 qua-
sispecies, it suffices to bunch groups of c;j together into
groups with k=0,1,2. Thus we will use the notation c;
=2,,¢;jr- This bunching is natural since it stresses the differ-
ent environments (potential barriers for unit vector orienta-
tion) seen by the quasispecies in each group, helping us to
disentangle the competing dynamics leading to relaxation.

III. ANALYSIS OF THE SPIN DECORRELATION
A. Elementary processes

We denote below the spin-relaxation function for each
value of k as F}(¢). This function is defined as in Eq. (5) but
restricted to particles whose n-stars are characterized by k
=0, 1, or 2,

Fi(t) = (1/N) 2 (u () - u(0)),

iek

(1)

where N, is the number of n-stars with a given value of k.
We expect these functions to depend on k but not to change
(as a function) with temperature. Next we note that a spin
can change its angle with respect to an interparticle vector
distance either due to the spin rotation with the interparticle
vector distance fixed, or due to translation in which the in-
terparticle vector distance changes (cf. [1], Fig. 6). We ex-
pect that the typical times for rotational and for translational
relaxation may differ, and may also have different tempera-
ture dependence. We denote the rotational relaxation time as
T.oi(k, T), providing it with temperature dependence and also
with dependence on k=0, 1,2. Similarly, the translational re-
laxation time is denoted 7,(k,T). Finally, we present our
main assumption (to be tested against the data) that to a good
approximation these relaxation channels are independent and
competing, allowing us to write the relaxation function F(¢)
for each family of quasiparticles k=0,1,2 as a product of
two scaling functions:

0= 1ol i ol i)
Kz ~fr0t Tml(k,T) ftr Tlr(k,T) .

We will show (see Fig. 5) that the scaling functions on the
RHS of Eq. (12) do not depend on the temperature. Of

(12)

course the typical relaxation times 7,o(k,T) and 7,(k,T) may
depend on time in a way that we should be able to model.

Modeling of the translation channel is the same for all the
k groups, since the slowing down of translation in this sys-
tem is dominated by the decrease in concentration of the k
=0 quasispecies as the temperature decreases [11]. Indeed,
with the concentration of ¢;_o(T) decreasing, one defines a
typical increasing scale &7T)=1/Vc,_o(T), whose physical
meaning is the typical length of the cooperative event that
results in any appreciable translational motion. Accordingly
the typical relaxation time associated with translation grows
as [2]

7ok, T) = 70(k)eFEDT (13)
where w is the characteristic free energy per particle in-
volved in the cooperative event of length ¢ and 7'8 is an
attempt time (of the order of unity) that may depend on k.

At this point we note that in many instances where scaling
theory prevails, it is much easier to determine theoretically
the correlation scales or the relaxation times than to guess
the scaling functions. The present problem is not an excep-
tion. We do not know at the present time how to determine
the relaxation functions from pure thought, and we must ask
the simulation for help. Thus, for example, we find from the
data analysis that the relaxation function f,(¢/7.(k)) is a
simple exponential,

ftr(t/ Tlr(k’ T)) = e_t/Ttr(k,T) s (14)
and all the non-Arrhenius dependence comes from the de-
pendence of & on 7. We stress that in other cases the scaling
function might be a stretched exponential (see below), or any
other legal scaling function as long as it depends on (¢/7)
only.

The rotation channel calls for more scrutiny, since the k
=0 and 1 quasispecies differ significantly from the k=2 qua-
sispecies, as the latter tend to aggregate in clusters. We there-
fore need to deal with them differently. Quasiparticles with
k=0,1 are relatively free to rotate, and all that they need to
do is to overcome the potential energy barrier for rotation.
We thus expect their relaxation times to be of simple Arrhen-
ius form, i.e.,
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TABLE 1. Parameters used in the model.

k=0 k=1 k=2

B 0.57 0.45 0.6

AE,q (k) 1.27 1.33

" 0.27 0.32 0.39

(k) 0.24 2.48

(k) 2.48 1.6 1.07
Toot(k) = 72 (K)eAE®T for k=0, 1, (15)

with AE, (k) of the order of the energies of the “bonds”
broken. This is indeed what is found (see Table I). The func-
tional form of the rotational scaling function turns out to be
stretched exponential, i.e.,

1%

Frot! Tk, T)) = 71/t fork=0,1, (16)

with B(k) that does not depend on the temperature. The val-
ues of these temperature-independent parameters are shown
in Table I. These parameters are obtained from best fits of the
presumed functional forms to the simulation data.

Since the assumption (12) appears new to the subject of
glassy dynamics, we should test it very carefully. The best
test is to divide, for each k value, the measured relaxation
function F,(7) by either f,,(¢/ Tyoi(k, T)) or fi(t/ 7(k,T)) and
show that the remaining quantity is a scaling function of one
variable as stated. In other words, we should show that we
can get a convincing data collapse by plotting such ratios as
a function of time scaled by the relaxation times, either (13)
or (15) as is appropriate. In Fig. 5 (left panel) we show
Fi—o(®)/ fi(t/ 7.(k=0,T)) for all the different temperatures
shown in Fig. 1. We see that, in spite of the considerable
variation in orders of magnitude in the relaxation functions,
the data collapse observed here as function of #/7,.(k
=0,T7) is excellent indeed. In Fig. 5 (right panel) we show a
similar data collapse for k=1. While not as superb as the data
collapse for k=0, we still accept it as good enough in light of
the huge dispersion of the original relaxation functions.

For k=2 we cannot expect such a simple model to hold.
The reason is that at lower temperatures the k=2 quasiparti-
cles aggregate inside clusters whose average size increases
when the temperature decreases [6]. The distribution of clus-
ter sizes depends on 7, and to represent the rotational relax-
ation function one needs to decompose it into cluster contri-
butions [9,10]. Each cluster may decay simply with
Arrhenius decay time, but the ensemble is expected to show
a strongly non-Arrhenius relaxation time, as shown in [9,10].
For the sake of brevity we do not attempt here to derive the
rotational relaxation function of the k=2 quasiparticles but
we simply measure and fit a relaxation function according to

Frot(t/Took =2,T)) = exp{— [t/ ,i(k=2,T)1°%}, (17)

with the measured value of 7,,(k=2,T) as shown in Fig. 6.
Note that this relaxation function is again temperature inde-
pendent [except through the dependence of 7,,(k=2)].

We thus possess models for all the elementary relaxation
functions in addition to Eq. (17). The parameters used are
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FIG. 6. (Color online) The logarithm of the relaxation time
T,of(k=2) as a function of inverse temperature.

temperature independent, and are summarized in Table 1. All
that remains is to sum up the contributions together with the
right weights.

B. Computing the correlation functions

Having modeled the spin-decorrelation formulas due to
the two channels of decay for the three natural groups of
quasiparticles, we should be able to predict the total relax-
ation function simply by summing up the three contributions,
with each one weighted by the predicted concentration of the
appropriate group of quasispecies with a given k. In other
words, we should plot

2
Crl(t) = E cl(TVF(1), (18)
k=0

and compare the results with the data. This comparison is
shown in Fig. 7. It is quite clear that the agreement is essen-
tially perfect.

IV. CONCLUDING REMARKS

We reiterate that the functions F,(r) in Eq. (7) are prod-
ucts of scaling functions and are therefore temperature inde-

FIG. 7. (Color online) Comparison of the theoretical relaxation
function (7) (circles) with data from the simulations (continuous
line). The temperatures shown from left to right are 7=0.4, 0.3,
0.25, 0.22, 0.20, 018, and 0.17.
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pendent functions. All the temperature dependence in Fig. 7
stems from the dependence of the typical decay time of each
elementary process and from the temperature-dependent
weights of the concentrations of k groups of quasispecies.
The apparent change of 8 in the stretched exponential fit to
this data [6] as a function of temperature stems solely from
the change of importance of the various k groups as a func-
tion of the temperature, and from the change of importance
of rotation vs translation (remember that the translational
elementary contributions appear here always as pure expo-
nentials).

The bottom line of this analysis is twofold. First, we dem-
onstrate that it is possible to break apart relaxation processes
in glass-forming systems into more elementary contributions,
giving much better a understanding of the origin of the com-
plex time dependence of relaxation functions. In this point
we simply extend what was proposed in [9,10]. Second, we
stress the danger of straight numerical fits to relaxation func-
tions; when these change their functional form with tempera-
ture, the reason should be sought in the existence of a com-
posite process with various dynamical contributions, each of

PHYSICAL REVIEW E 79, 031501 (2009)

which may be quite simple. Fitting blindly an “overall” re-
laxation time to an “overall” relaxation function may yield
relaxation times with an incorrect temperature dependence.
Note that the analysis presented above exhibits some pro-
cesses whose relaxation times are pure Arrhenius, and some
whose relaxation times are super-Arrhenius. Is the glass-
forming system then fragile or strong? We conclude that
whether the system is fragile or strong in the Angell parlance
[1] may be in the eyes of the beholder, especially if the said
beholder did not reveal the details of the physical phenom-
enon. While it is easier to decompose the relaxation process
into its physical components in numerical simulations, care-
ful experiments that can follow single molecules [12] should
be useful in clearing up the physical picture of glassy relax-
ation.
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